Brentwood Wastewater Collection System Master Plan

April 9, 2015

SINCE **1951**

Hazen and Sawyer has focused on two things: providing safe drinking water and controlling water pollution.

SOCIAL SOCIETIES SOCIETIES ENGINEERS

NASHVILLE OFFICE

545 Mainstream Drive Suite 320 Nashville,TN 37228 (615) 783-1515

*New Office Location

FIRM SUMMARY

Legal Entity: Hazen and Sawyer, DPC **Type of Business:** Design Professional Corporation

State of Incorporation: New York Website:

www.hazenandsawyer.com

Hazen and Sawyer Project Team

- Scott Woodard, P.E. Project Principal
- Michael Orr, P.E. Project Manager
- Ryan Dean Collection System Hydraulic Model
- Saya Qualls, P.E. Technical/Regulatory Support
- Other local support staff

Purpose of the Master Plan

- Develop a comprehensive short-term and long-term plan for maintenance and development of Brentwood's wastewater collection system
 - Assure rate payer funds are used in cost-effective manner to maximize benefit and reduce impact on business and residents

Master Planning Elements Wastewater Collection System

- **Evaluate** existing performance and capacity of collection system
- <u>Identify</u> projected short-term and long-term collection system capacity needs based on predicted growth patterns and other drivers
- Evaluate alternatives to address needs
- <u>Identify</u> short and long term improvements to address capacity issues; when feasible, projects constructed today should address future capacity needs
- **Prioritize** projects
- <u>Develop</u> Capital Improvement Plan for implementation

Utilize guidance of EPA, TDEC, WEF and other industry organizations

Master Plan Methodology

- Hydraulic Model Development (completed)
- Data Collection and Analysis
- Develop Future Flow Conditions
- Baseline and Future Conditions Analysis
- Capital Improvements Plan
- Master Plan Report

Master Plan Methodology Hydraulic Model Development (completed)

- InfoWorks model developed utilizing GIS, sewer record drawings, previous studies, field investigation, survey and other sources
- Model calibrated for both dry weather and wet weather flows
- Model overview

Brentwood's Wastewater Collection System

Model

• +2,000 manholes

• +1,200 subcatchments

- 12 pump stations
- Real-time controls at Brentwood Pump Station
- Pipe size between 2 and 30-inch

Wastewater Collection System Model Development

- Modeling Goals and Objectives
 - Evaluation of existing system
 - Capital planning
 - Optimize operations with better understanding
- Modeling Software
- Typical Modeling Elements
 - Nodes
 - Conduits
 - Subcatchments
 - Pump Stations and Force Mains

Wastewater Collection System Model Flow Meters and Rain Gauges

- Rain gauge data
 - Identify periods of dry weather and wet weather events
 - Characterize rainfall events based on return intervals
- Evaluation of meter data
 - Dry weather flows and per capita flows
 - Rain dependent inflow and infiltration
 - Groundwater infiltration

Master Plan Methodology Data Collection and Analysis

- InfoWorks hydraulic model
- Past planning reports and studies
- Population growth patterns and projections
- Hydraulic analyses
- Staff knowledge
- Various other sources of relevant data/information

Master Plan Methodology Develop Future Flow Conditions

- Flow projections by sewershed (workshop)
 - Service boundaries
 - Population projections
 - Development/redevelopment potential
 - Land use
- Planning horizons
 - 2020 (5-year)
 - 2030 (15-year)
 - Ultimate

Master Plan Methodology Baseline and Future Conditions Analysis

- Condition Analysis
 - Baseline (current) dry weather conditions
 - Baseline (current) 2-year, 24-hour design storm
 - Future Planning Horizons (5, 15, ultimate) dry weather
 - Future Planning Horizons (5, 15, ultimate) 2-year, 24-hour design storm
- Identify
 - SSOs, surcharging lines, hydraulic deficiencies
 - PS performance, other system characteristics
- Design Criteria will be established
- Three workshops during this task modeling results and design criteria

Master Plan Methodology Capital Improvements Plan

- Improvements will likely include optimization of existing infrastructure and new infrastructure (workshop)
- Prioritized list of collection system improvements will be developed (workshop)
- Improvement cost estimates
- Improvements grouped and sequenced to minimize disruption and impact
- Schedule for implementation

Master Plan Methodology Master Plan Report

- Summary of all master planning tasks (workshop)
- Final recommended CIP for short-term and long-term improvements
- Scheduled completion by December 2015

Questions/Discussion

